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LE’ITER TO THE EDITOR 

On the critical temperature of the two-dimensional Ising 
spin glass models? 

Lech LongaS 
Solid State Physics Laboratory, University of Groningen, Melkweg 1,9718 EP Groningen, 
The Netherlands 

Received 23 November 1981 

Abstract. The critical temperature for a quenched king model on the square lattice, with 
vertical random interactions, is found exactly. The detailed phase diagram is obtained 
for the bond-dilute model and for the model with mixed ferro- and antiferromagnetic 6 
distribution of the bonds. For the class of the models with symmetric distribution of the 
bonds (P(J)  = P ( - J ) )  it is shown that the critical temperature is always equal to zero. An 
immediate consequence of this is the theorem about the absence of the second-order 
phase transitions for the square, fully random, quenched king model with symmetric 
distribution of the bonds. 

Much work has recently been devoted to the study of static and dynamic properties 
of spin glasses (Fisher 1977, Kinzel and Fisher 1977). The experimental data show 
that the properties of random magnets differ qualitatively from those of ordinary 
magnetic materials. For example, at a certain ‘freezing’ temperature Tf, the magnetic 
susceptibility has a sharp cusp in the zero-magnetic field (Arrolt 1965). This cusp is 
strongly rounded even by a small magnetic field. At Tf no singularity occurs in the 
specific heat (Wegner and Keesom 1976). 

From a theoretical point of view, the random quenched magnets are very compli- 
cated systems, since the spin degrees of freedom interact with each neighbour through 
a random bond interaction. So, we must first solve such completely anisotropic models 
and then average the calculated free energy over the probability distribution of all 
bonds. This is the reason why the problem of phase transitions in spin glass models 
is still a very puzzling matter. The Monte Carlo calculations, the high-temperature 
series expansions and the real space renormalisation group used for random king 
models give only very inconclusive answers (Kinzel and Fisher 1978, Fish and Harris 
1977, Binder 1979). To go further, a concept of relevant and irrelevant disorder has 
been introduced (Kirkpatrick 1977). It is well known that there is a class of models, 
commonly known as Mattis (flat) models (Mattis 1976), for which randomness is trivial 
and can be eliminated. Therefore, Toulouse (1977) has advanced the concept of 
frustration as a measure of relevant disorder and realised the existence of a local 
(gauge) symmetry of random magnets at the microscopic level. Quite generally, in 
frustrated systems, as compared with unfrustrated ones, there is a density of ‘defects’ 

t The results of this Letter were presented at the International Conference on Disordered Systems and 
Localization, Rome, 13-15 May, 1981. 
$ Permanent address: Department of Statistical Physics, Institute of Physics, Reymonta 4,39-059 Krakdw, 
Poland. 
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which cannot be eliminated by a local gauge transformation. For a plane random 
Ising model this situation appears for a particular square, when one of the bonds has 
a different sign from the other three. Thus, the ground state energy is always larger 
than in the pure system and the state is highly degenerated. The questions which 
immediately arise are the following. How do the frustration and disorder-induced 
frustration influence the thermodynamic behaviour of the system for TsO? In 
particular, how does the ferromagnetic critical temperature change as a function of 
the concentration of antiferromagnetic impurities, which give the non-vanishing proba- 
bility of frustration of elementary cells? How do the properties of the model depend 
on the parameters of the distribution function of the bonds? The purpose of this 
Letter is to give a partial answer to these questions. The critical temperature T, as 
a function of the distribution function parameters is found exactly for the McCoy and 
Wu version of the spin glass model. Some exact results for quenched, fully random, 
Ising planar models are also presented. 

The McCoy and Wu version of the spin glass model (MCWSG) is a kind of quenched, 
square Ising model, described by the Hamiltonian 

where j labels the rows and k labels the columns of the lattice (figure 1). All vertical 
bonds J k  are independent random variables with a probability distribution function 
P(Jk) .  This means that all the interactions in a column k are the same and are allowed 
to vary from column to column. 
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Figure 1. The MCWSG model. 

McCoy and Wu (1968) have solved a similar model (which we will call here the 
MCW model), obtained by changing Jk into Ji in equation (1). The difference, however, 
between the MCWSG model and the MCW model is essential. For example, when P(Jk)  
in the MCWSG model (or P(J j )  in the MCW model) is equal to (1 - p )  6(Jk - Jo) + 
pS(Jk +Jo) (0 s p  s I), the MCWSG model yields a non-trivial probability of frustration 
of elementary cells. This situation appears when the vertical bonds on some elementary 
cells are of different signs, One can easily check that the probability of such a 
configuration of the bonds for an arbitrary, elementary cell for the MCWSG model is 
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equal to 2p(l-p). On the other hand the MCW model is equivalent to the Mattis 
(flat) model (Mattis 1976), the model in which there is no frustration. 

Following the derivation of the free energy given by McCoy and Wu (1968), one 
can obtain the free energy and the critical temperature formulae for the model (1). 

The free energy per particle F: 

- PF = ln(2 cosh &TO) + 
+m 

P ( J )  ln(cosh P J )  dJ 

dx ln[a(P 

1-m 

+z 1-:d61_ aI, 
+m +m 1 

6)x + w2( 

w(x) = tanh(x), 

and where v(x) is the solution of the integral equation 

under the constraint 

kg is the Boltzmann constant. 

Critical temperature : 

The absolute value of 1 in equation (4) is a consequence of the fact that the MCWSG 
model allows for negative values for the bonds. Thus the obtained condition must 
reflect the symmetry between ferro- and antiferromagnetic states. 

For any given Jo and P(Jk), there exists only one non-negative critical temperature 
T, that will satisfy equation (4). This is so, because condition (4) for T = T, is exactly 
the same as in the case of the pure Ising, square model with horizontal bonds equal 
to Jo and vertical bonds equal to 111. All the remaining properties of formula (4) are 
dependent on the form of the probability distribution function P(Jk). 

Finally, we would like to point out that the critical temperature of the MCWSG 
model gives an upper bound for the critical temperature of the fully random model?. 

t For the fully random model each bond is an independent random variable. 
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The following theorem is valid for the MCWSG model: 

v P ( J )  3 &P): v p o l  3 Ijo(P)l 

T, (fully random model; P )  s TJMCWSG, Jo;  PI. (51 

It is easy to obtain the proof of this theorem by pointing out that in the limit of strong 
Jo  interaction, the two-particle correlation function, defined as 

lim lim b , , k c , , k + r ) ,  
i-m l o - m  

approaches its limiting value + 1  or -1 (here ( A )  denotes the thermodynamic average 
and A denotes the quenched average). From this it follows that our theorem is valid 
for distribution functions P ( J )  which are non-zero on finite intervals of J.  

As a consequence of inequality ( 5 )  and formula (4) the theorem about the absence 
of the second-order phase transition at temperatures greater than zero is valid for the 
square, fully random, quenched Ising model with symmetric distribution of the bonds 
( P ( J )  = P(-J)) .  A special case of symmetric P ( J )  is the gaussian distribution function 
centred around J = 0 (Reed 1979). 

Now we would like to discuss in detail the properties of critical lines for the 
bond-diluted model (BD) with 

(61 P(Jk ) = 1 - p ) S  ( J k  + p a  ( J k  - J O )  

and for the MCWSG frustration model (Longa 1980) 

P(Jk = ( 1 - p )a ( J k  + J O )  + p a  (Jk - J O )  3 

w ( ~ / T J  = exp(-2p/Tc), BD model, (8) 

W ( l / T c )  = ~ X P ( - ~ I ~ - ~ P ~ T C ) ,  MSWSG model, (9) 

Jo 3 0.  ( 7 )  

In these cases equation (4) has the form 

where T~ = kBTc/Jo. The critical temperature T ~ ,  obtained from equations (8) and (9). 
plotted against the parameter p is illustrated in figure 2. 

For the BD model the critical temperature decreases with decreasing probability 
p ,  for 0 = s p  =s 1. It reaches the limiting value 0 when the concentration of diluted 
bonds is equal to 1 ( p c  = 0)f. This percolation threshold has a very nice geometrical 
interpretation. For p = 0, the BD model is equivalent to the set of non-interacting 
chains (broken lines in figure 1) and thus T, = 0. For p > 0 all chains are spoiled by 
vertical interactions. This indicates that the long-range magnetic order is possible 
also for T= > 0. In the neighbourhood of the point p = 1 the phase diagram TJ p)_can 
be approximated by a straight line, with slope sBD = ( d ~ J d p ) ~ =  = l/ln( 1 + 42) = 
1.135. 

For the MCWSG model, the critical line is (as expected) symmetric with respect to 
the exchange of p and l -p.  Additionally, one can easily check that the critical 
temperature decreases with decreasing probability p ,  for 0.5 =s p s 1. -It reaches the 
limiting value 0 for p = $. The slope SMCWSG = ( d ~ ~ / d p ) ~ = ~  = 2/ln(l + J 2 )  = 2.269. 

The behaviour of the phase diagrams (8) and (9) is similar to this one known for 
fully random models (Tsallis and Levy 1980, Jayaprakash et a1 1978, Guilmin and 
Turban 1980). Each critical temperature line increases from T ,  = 0 at p c  to the pure 

t p c  means the percolation threshold 
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P 

Figure 2. Critical temperature lines for the (a) bond-diluted model (broken line); ( b )  
MCWSG model (full h e ) .  

Ising value T~ = 2/ln(l +A) at p = 1. For a wide range of values of p the critical 
temperature diagram can be approximated by a straight line. Close to pc it decreases 
rapidly to zero. 

Finally, we would like to add that the critical temperature is weakly dependent 
on the shape of the distribution function. Two different distributions with the same 
values of the first moment lead to indistinguishable phase boundaries. 

The author is indebted to Professor A J Dekker and Dr W H de Jeu for kind hospitality 
during his stay at the University of Groningen. It is also a pleasure to thank Professor 
R Maynard, Drs M Gabay and I Morgenstern for valuable discussions. 
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